

Implementation of Multi-Benefit Juvenile Salmonid Habitat Restoration on the Lower Yuba River: The Hallwood Side Channel and Floodplain Restoration Project

Jai Singh, April Sawyer, Chris Hammersmark, Sam Diaz *(cbec, inc.)* Kirsten Sellheim, Joe Merz, Philip Colombano *(Cramer Fish Sciences)* Aaron Zettler-Mann, Tyler Goodearly *(South Yuba River Citizens League)* Paul Cadrett *(USFWS AFRP)* Jeff Mathews *(Yuba Water Agency)*

August 22, 2023 | National Stream Restoration Conference

Presentation Outline

- 1. Project and Site Background
- 2. Project Design
- 3. Construction and Implementation Considerations
- 4. Post-Project Monitoring

Project Goals

- Restore and enhance ecosystem processes for productive juvenile salmonid rearing habitat
- Increase natural production of Chinook salmon and Central Valley steelhead in the Lower Yuba River
- Support CVPIA Anadromous Fish Restoration Program (AFRP)
 "Doubling Goal"
- Flood benefit
- Local economy
- Research

The Need For Salmon Habitat Restoration in California

Project Location and Site History

ATER AGENCY

Hydraulic Gold Mining in The Yuba River Watershed

Pre-Project Conditions

Restoration Design

Pre-Project Topography/Bathymetry

Full Project Grading

Habitat Enhancements

Construction Phasing – 5 Years to Move 3.2 Million CY of Sediment

Moving 3.2 Million CY of Sediment

Project Funding Via Public-Private Partnership

Agency	Project	
US Fish & Wildlife Service (CVPIA via USBR)	\$	3,823,000
California Natural Resources Agency (Prop 68)	\$	2,875,000
Wildlife Conservation Board (Prop 1)	\$	1,985,000
Yuba Water Agency	\$	3,205,000
Total	\$	11,888,000

- Original USFWS grant secured by cbec in 2013
- Teichert in-kind contribution of ~\$72,000,000 for full build out
 - Cost to truck haul 3,200,000 CY of aggregate to next nearest competitor 3 miles away
- Cost / acre ~ \$75,700
 - Planning, permitting, design, implementation, pre- and post-project effectiveness and validation biological monitoring (2 years pre- and 4 years post-)

Phase 1 Rough Grading

Increased Lateral Connectivity – October 2021 Event

Phase 1 – Upper Site

Before Fine Grading (May 2020)

After Fine Grading (Dec 2020)

Time Lapse of Phase 2 Earthwork

Phase 2 Before-After

Before Grading (March 2021)

Completed Grading (December 2021)

Phase 2 Flyover

UBA

WATER AGENCY

Hallwood Side Channel and Floodplain Restoration Project | 21 of 48

UBA

Hallwood Side Channel and Floodplain Restoration Project | 22 of 48

Hallwood Side Channel and Floodplain Restoration Project | 23 of 48

Photo Comparison – Upper Perennial Channel

Photo Comparison – Upper Perennial Channel

Photo Comparison – Seasonal Alcove

Photo Comparison - Seasonal Alcove

Hallwood Effectiveness Monitoring – Key Questions

• Fish communities

- Will salmonid abundance increase?
- Will non-native fish abundance decrease?
- Predator/prey dynamics
 - Will predator fish densities decrease?
 - Will predation on juvenile salmonids decrease?
 - Will prey abundance increase?
- Riparian trees
 - Will riparian trees recruit and survive within restored habitat features?

Did prey abundance increase?

ATER AGENCY

Did prey abundance increase?

ATER AGENCY

Following Restoration at Hallwood, 1 year Post

- Higher juvenile (and adult) salmon abundance
- More food for salmonids, fuller stomachs, and enhanced growth for salmon rearing
 > 1 week in the side channel
- Reduced predatory and non-native fish
- No evidence of predation at Hallwood (extensive predation at control site)
- Native riparian trees recruited, even in a drought year

THANK YOU!

A Multi-Benefit Project

Flood benefit (up to 3 ft WSE reduction for 100-year event)
Projected benefits to local economy, including recreational fishery

Educational benefits, community involvement, scientific research

Hallwood Side Channel and Floodplain Restoration Project | 33 of 32

Perennial Channel Typical Sections

- Sequence of 14 riffles and pool
- At baseflow ~500 cfs, channel ~0.5-6 ft deep and 18 40 ft wide, perennially connected to groundwater upstream and laterally

Methods

• Fyke trapping

Hallwood Side Channel and Floodplain Restoration Project | 35 of 32

Methods

Methods

- Fyke trapping
- PIT tagging and predator seining
- Drift invertebrate sampling

Hallwood

Control

OR

